Package: heimdall 1.0.727
heimdall: Drift Adaptable Models
By analyzing streaming datasets, it is possible to observe significant changes in the data distribution or models' accuracy during their prediction (concept drift). The goal of 'heimdall' is to measure when concept drift occurs. The package makes available several state-of-the-art methods. It also tackles how to adapt models in a nonstationary context. Some concept drifts methods are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.
Authors:
heimdall_1.0.727.tar.gz
heimdall_1.0.727.zip(r-4.5)heimdall_1.0.727.zip(r-4.4)heimdall_1.0.727.zip(r-4.3)
heimdall_1.0.727.tgz(r-4.4-any)heimdall_1.0.727.tgz(r-4.3-any)
heimdall_1.0.727.tar.gz(r-4.5-noble)heimdall_1.0.727.tar.gz(r-4.4-noble)
heimdall_1.0.727.tgz(r-4.4-emscripten)heimdall_1.0.727.tgz(r-4.3-emscripten)
heimdall.pdf |heimdall.html✨
heimdall/json (API)
# Install 'heimdall' in R: |
install.packages('heimdall', repos = c('https://cefet-rj-dal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cefet-rj-dal/heimdall/issues
- st_drift_examples - Synthetic time series for concept drift detection
Last updated 11 days agofrom:7d7c8bd53f. Checks:1 OK, 6 WARNING. Indexed: yes.
Target | Result | Latest binary |
---|---|---|
Doc / Vignettes | OK | Jan 21 2025 |
R-4.5-win | WARNING | Jan 21 2025 |
R-4.5-linux | WARNING | Jan 21 2025 |
R-4.4-win | WARNING | Jan 21 2025 |
R-4.4-mac | WARNING | Jan 21 2025 |
R-4.3-win | WARNING | Jan 21 2025 |
R-4.3-mac | WARNING | Jan 21 2025 |
Exports:dfr_adwindfr_aedddfr_cusumdfr_ddmdfr_ecdddfr_eddmdfr_hddmdfr_inactivedfr_kldistdfr_kswindfr_mcdddfr_multi_criteriadfr_page_hinkleydfr_passivedist_baseddriftererror_basedmetricmt_accuracymt_fscoremt_precisionmt_recallmt_rocaucmv_dist_basednormnrm_memoryreset_statestealthyupdate_state
Dependencies:bitopscaretcaToolsclasscliclockclustercodetoolscolorspacecpp11curldaltoolboxdata.tabledbscandiagramdigestdplyre1071elmNNRcppfansifarverFNNforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergplotsgtablegtoolshardhathereipredisobanditeratorsjsonliteKernelKnnKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshapereshape2reticulaterlangROCRrpartrprojrootscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo