Package: heimdall 1.0.717
heimdall: Drift Adaptable Models
By analyzing streaming datasets, it is possible to observe significant changes in the data distribution or models' accuracy during their prediction (concept drift). The goal of 'heimdall' is to measure when concept drift occurs. The package makes available several state-of-the-art methods. It also tackles how to adapt models in a nonstationary context. Some concept drifts methods are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.
Authors:
heimdall_1.0.717.tar.gz
heimdall_1.0.717.zip(r-4.5)heimdall_1.0.717.zip(r-4.4)heimdall_1.0.717.zip(r-4.3)
heimdall_1.0.717.tgz(r-4.4-any)heimdall_1.0.717.tgz(r-4.3-any)
heimdall_1.0.717.tar.gz(r-4.5-noble)heimdall_1.0.717.tar.gz(r-4.4-noble)
heimdall_1.0.717.tgz(r-4.4-emscripten)heimdall_1.0.717.tgz(r-4.3-emscripten)
heimdall.pdf |heimdall.html✨
heimdall/json (API)
# Install 'heimdall' in R: |
install.packages('heimdall', repos = c('https://cefet-rj-dal.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/cefet-rj-dal/heimdall/issues
- st_drift_examples - Synthetic time series for concept drift detection
Last updated 12 days agofrom:0f2ed799c8. Checks:OK: 1 NOTE: 6. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 11 2024 |
R-4.5-win | NOTE | Nov 11 2024 |
R-4.5-linux | NOTE | Nov 11 2024 |
R-4.4-win | NOTE | Nov 11 2024 |
R-4.4-mac | NOTE | Nov 11 2024 |
R-4.3-win | NOTE | Nov 11 2024 |
R-4.3-mac | NOTE | Nov 11 2024 |
Exports:dfr_adwindfr_aedddfr_caedddfr_cusumdfr_daedddfr_ddmdfr_ecdddfr_eddmdfr_hddmdfr_inactivedfr_kldistdfr_kswindfr_mcdddfr_page_hinkleydfr_passivedfr_saedddfr_vaedddist_baseddriftererror_basedmetricmt_accuracymt_fscoremt_precisionmt_recallmulti_criteriamv_dist_basedreset_statestealthyupdate_state
Dependencies:bitopscaretcaToolsclasscliclockclustercodetoolscolorspacecpp11curldaltoolboxdata.tabledbscandiagramdigestdplyre1071elmNNRcppfansifarverFNNforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergplotsgtablegtoolshardhathereipredisobanditeratorsjsonliteKernelKnnKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshapereshape2reticulaterlangROCRrpartrprojrootscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo