Package: heimdall 1.0.717

Eduardo Ogasawara

heimdall: Drift Adaptable Models

By analyzing streaming datasets, it is possible to observe significant changes in the data distribution or models' accuracy during their prediction (concept drift). The goal of 'heimdall' is to measure when concept drift occurs. The package makes available several state-of-the-art methods. It also tackles how to adapt models in a nonstationary context. Some concept drifts methods are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.

Authors:Lucas Tavares [aut], Leonardo Carvalho [aut], Diego Carvalho [aut], Esther Pacitti [aut], Fabio Porto [aut], Eduardo Ogasawara [aut, ths, cre], Federal Center for Technological Education of Rio de Janeiro [cph]

heimdall_1.0.717.tar.gz
heimdall_1.0.717.zip(r-4.5)heimdall_1.0.717.zip(r-4.4)heimdall_1.0.717.zip(r-4.3)
heimdall_1.0.717.tgz(r-4.4-any)heimdall_1.0.717.tgz(r-4.3-any)
heimdall_1.0.717.tar.gz(r-4.5-noble)heimdall_1.0.717.tar.gz(r-4.4-noble)
heimdall_1.0.717.tgz(r-4.4-emscripten)heimdall_1.0.717.tgz(r-4.3-emscripten)
heimdall.pdf |heimdall.html
heimdall/json (API)

# Install 'heimdall' in R:
install.packages('heimdall', repos = c('https://cefet-rj-dal.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cefet-rj-dal/heimdall/issues

Datasets:

On CRAN:

4.63 score 2 stars 39 scripts 231 downloads 30 exports 109 dependencies

Last updated 12 days agofrom:0f2ed799c8. Checks:OK: 1 NOTE: 6. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 11 2024
R-4.5-winNOTENov 11 2024
R-4.5-linuxNOTENov 11 2024
R-4.4-winNOTENov 11 2024
R-4.4-macNOTENov 11 2024
R-4.3-winNOTENov 11 2024
R-4.3-macNOTENov 11 2024

Exports:dfr_adwindfr_aedddfr_caedddfr_cusumdfr_daedddfr_ddmdfr_ecdddfr_eddmdfr_hddmdfr_inactivedfr_kldistdfr_kswindfr_mcdddfr_page_hinkleydfr_passivedfr_saedddfr_vaedddist_baseddriftererror_basedmetricmt_accuracymt_fscoremt_precisionmt_recallmulti_criteriamv_dist_basedreset_statestealthyupdate_state

Dependencies:bitopscaretcaToolsclasscliclockclustercodetoolscolorspacecpp11curldaltoolboxdata.tabledbscandiagramdigestdplyre1071elmNNRcppfansifarverFNNforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergplotsgtablegtoolshardhathereipredisobanditeratorsjsonliteKernelKnnKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshapereshape2reticulaterlangROCRrpartrprojrootscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo