Package: heimdall 1.0.727

Eduardo Ogasawara

heimdall: Drift Adaptable Models

By analyzing streaming datasets, it is possible to observe significant changes in the data distribution or models' accuracy during their prediction (concept drift). The goal of 'heimdall' is to measure when concept drift occurs. The package makes available several state-of-the-art methods. It also tackles how to adapt models in a nonstationary context. Some concept drifts methods are described in Tavares (2022) <doi:10.1007/s12530-021-09415-z>.

Authors:Lucas Tavares [aut], Leonardo Carvalho [aut], Diego Carvalho [aut], Esther Pacitti [aut], Fabio Porto [aut], Eduardo Ogasawara [aut, ths, cre], Federal Center for Technological Education of Rio de Janeiro [cph]

heimdall_1.0.727.tar.gz
heimdall_1.0.727.zip(r-4.5)heimdall_1.0.727.zip(r-4.4)heimdall_1.0.727.zip(r-4.3)
heimdall_1.0.727.tgz(r-4.4-any)heimdall_1.0.727.tgz(r-4.3-any)
heimdall_1.0.727.tar.gz(r-4.5-noble)heimdall_1.0.727.tar.gz(r-4.4-noble)
heimdall_1.0.727.tgz(r-4.4-emscripten)heimdall_1.0.727.tgz(r-4.3-emscripten)
heimdall.pdf |heimdall.html
heimdall/json (API)

# Install 'heimdall' in R:
install.packages('heimdall', repos = c('https://cefet-rj-dal.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/cefet-rj-dal/heimdall/issues

Datasets:

On CRAN:

4.77 score 2 stars 45 scripts 227 downloads 29 exports 109 dependencies

Last updated 11 days agofrom:7d7c8bd53f. Checks:1 OK, 6 WARNING. Indexed: yes.

TargetResultLatest binary
Doc / VignettesOKJan 21 2025
R-4.5-winWARNINGJan 21 2025
R-4.5-linuxWARNINGJan 21 2025
R-4.4-winWARNINGJan 21 2025
R-4.4-macWARNINGJan 21 2025
R-4.3-winWARNINGJan 21 2025
R-4.3-macWARNINGJan 21 2025

Exports:dfr_adwindfr_aedddfr_cusumdfr_ddmdfr_ecdddfr_eddmdfr_hddmdfr_inactivedfr_kldistdfr_kswindfr_mcdddfr_multi_criteriadfr_page_hinkleydfr_passivedist_baseddriftererror_basedmetricmt_accuracymt_fscoremt_precisionmt_recallmt_rocaucmv_dist_basednormnrm_memoryreset_statestealthyupdate_state

Dependencies:bitopscaretcaToolsclasscliclockclustercodetoolscolorspacecpp11curldaltoolboxdata.tabledbscandiagramdigestdplyre1071elmNNRcppfansifarverFNNforeachforecastfracdifffuturefuture.applygenericsggplot2globalsgluegowergplotsgtablegtoolshardhathereipredisobanditeratorsjsonliteKernelKnnKernSmoothlabelinglatticelavalifecyclelistenvlmtestlubridatemagrittrMASSMatrixmgcvMLmetricsModelMetricsmunsellnlmennetnumDerivparallellypillarpkgconfigplyrpngpROCprodlimprogressrproxypurrrquadprogquantmodR6randomForestrappdirsRColorBrewerRcppRcppArmadilloRcppTOMLrecipesreshapereshape2reticulaterlangROCRrpartrprojrootscalesshapeSQUAREMstringistringrsurvivaltibbletidyrtidyselecttimechangetimeDatetreetseriesTTRtzdburcautf8vctrsviridisLitewithrxtszoo